

MATHEJA CONSULT

Königsberger Str. 5 30938 Burgwedel / OT Wettmar fon: +49 5139 / 402799 - 0 fax: +49 5139 / 402799 - 8 mobil: +49 / 1607262809 email : kontakt@matheja-consult.de www.matheja-consult.de

Morphodynamics and Scour Protection of Osborne Bridge at Five Cowrie Creek (Lagos / Nigeria)

Client: Bilfinger & Berger Nigeria GmbH

Location: Lagos, Nigeria

Construction: Osborne Bridge / Five Cowrie Creek

Scope of Work: Setup of a 2D morphodynamic model, simulation of bridge scour (longterm) **Methodology:** Numerical 2D sediment transport model with tidal boundary conditions

INTRODUCTION

Five Cowrie Creek has undergone considerable changes due to dredging, refilling, widening and fixing of channel banks. We were conducted for a study on morphodynamics in the vicinity of Osborne Bridge (Fig. 1, Fig.2).

Figure 1: Osborne Bridge at Five Cowrie Creek

METHODOLOGY

The bathymetry for a 2D sediment transport model (Fig. 3) was derived from also contracted echo soundings in March 2009. A calibration of model parameters was performed using ADCP measurements and water levels at five gauges from the same campaign.

Figure 2: Lagos Harbour Channel, Five Cowrie Creek and Location of Osborne Bridge

Figure 3: Morphodynamic Model of Lagos Harbour and Lagoon (above) and Mesh near Osborne Bridge

RESULTS

Numerical simulations have shown, that long-term scour near bridge piles can be calculated by numerical simulations using tidal boundary conditions (mean Neap-Spring-Tide Cycle with morphodynamic superelevation).

-0.40 -0.30 -0.20 -0.10 -0.00 0.10 0.20 0.30 0.40 0.50

Figure 4: Scour near Pile Axes 400, 410 and 420 Simulations have also shown that scour is acceptable during all phases of construction.